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Coordinate-independent mapping of structural
and functional data by objective relational

transformation (ORT)

Klaas E. Stephan1, Karl Zilles1 and Rolf KÎtter1*,2

1C. & O.Vogt Brain Research Institute, and 2Institute of Morphological Endocrinology and Histochemistry, Heinrich Heine University,
D- 40225 DÏsseldorf, Germany

Neuroscience has produced an enormous amount of structural and functional data. Powerful database
systems are required to make these data accessible for computational approaches such as higher-order
analyses and simulations. Available databases for key data such as anatomical and functional connectivity
between cortical areas, however, are still hampered by methodological problems. These problems arise
predominantly from the parcellation problem, the use of incongruent parcellation schemes by di¡erent
authors.We here present a coordinate-independent mathematical method to overcome this problem: objec-
tive relational transformation (ORT). Based on new classi¢cations for brain data and on methods from
theoretical computer science, ORT represents a formally de¢ned, transparent transformation method for
reproducible, coordinate-independent mapping of brain data to freely chosen parcellation schemes. We
describe the methodology of ORTand discuss its strengths and limitations. Using two practical examples,
we show that ORT in conjunction with connectivity databases like CoCoMac (http://www.cocomac.org) is
an important tool for analyses of cortical organizationand structure^function relationships.

Keywords: mapping method; analysis; database; cortex; connectivity; structure^function relationship

1. INTRODUCTION

Throughout the past few decades the di¡erent ¢elds of
neuroscience have accumulated an enormous amount of
data from the subcellular to the systems level. Paradoxic-
ally, this successful work has turned into a serious
problem: the explosive growth of new information creates
increasing problems in the integration of the available
data into comprehensive models of structure^function
relationships in the brain (Huerta et al. 1993). This di¤-
culty is the more severe, the higher the brain level
analysed and the more modalities of brain data involved,
and is clearly evident when studying the structural orga-
nization and computational principles of the cerebral
cortex (Burns & Young, this issue; Felleman & Van Essen
1991; Hilgetag et al. 1996; Hilgetag, Burns, O’Neill, Scan-
nell & Young, this issue ; Scannell et al. 1995; Young 1992,
1993; Young et al. 1995). Analytical approaches to these
questions cannot be framed on the basis of individual
experiments and require databases that integrate the
huge numbers of experimental ¢ndings for the various
modalities of brain data, such as connectivity between
distinct brain structures; electrophysiological data, both
of single neurons and networks; receptor distribution
data; and morphological data on di¡erent neuron types
(Huerta et al. 1993). In other disciplines, databases and
other techniques of computer-based information manage-
ment have already become indispensable tools for scien-
ti¢c progress. For example, the impressive development of

genetics and molecular biology would have been impos-
sible without databases of gene sequences and protein
structures (Frishman et al. 1998). A new and increasingly
important discipline, in which novel insights and experi-
mentally testable predictions are inferred from mathema-
tical analyses of these data, has emerged. It is called
`bioinformatics’.

The corresponding approach in neuroscienceö
neuroinformaticsöis much less acknowledged. The most
notable developments in neuroinformatics have concerned
databases representing data on structural connectivity
(Burns 1997; Felleman & Van Essen 1991; Scannell et al.
1995; Young 1993). The motivation for these databases is
the key role that data on association ¢bre connectivity
play in unravelling the organization of the cerebral
cortex. A large number of tracer studies have been
performed during the last several decades to unravel the
connections between cortical areas and subsets of these
data have been collated in the studies above. Representing
the lines of communication between the various cortical
areas, the complex wiring patterns between areas cannot
be inferred by intuition alone and so this approach
appears to be a necessary ¢rst step towards understanding
the organization of brain networks.

Unfortunately, integration and comparison of the
results of experimental studies has always been di¤cult
due to the incompatibility of the many parcellation
schemes used by experimenters. First, a variety of
di¡erent criteria have been employed by past and present
investigators to parcel the cerebral cortex into structural
and/or functional units (for reviews, see Van Essen 1985;
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Zilles 1990). Moreover, most of the criteria used for
parcellation (e.g. cytoarchitectonics, myeloarchitectonics,
enzyme staining) are not observer-independent, but yield
di¡erent results among di¡erent authors. Few attempts
have been made to develop and apply more observer-
independent methods (e.g. Schleicher et al. 1999;
Schleicher & Zilles 1990) or to de¢ne operationalized
criteria for the delineation of areal boundaries (e.g.
Carmichael & Price 1994). As a result of these methodo-
logical ambiguities di¡erent maps often di¡er consider-
ably in areal boundaries. Nevertheless, the same name
has sometimes been given to areas that are only partially
coextensive. An example of this occurrence is the supple-
mentary motor area (SMA), which refers to several
medial premotor areas all designated as SMA but with
di¡erent extents and locations (Wise et al. 1996).

Such confusion is highly problematic for the construc-
tion of integrative databases: How can the data of
di¡erent authors using di¡erent maps be made compar-
able to each other? A desirable solution might be spatial
mapping of experimental data on to a spatial reference
system or reference brain. Such a technique based on
nonlinear transformations of high-resolution MRI images
is currently being developed (Roland & Zilles 1994,
1996). However, this promising approach will only be
applicable to future experiments and not to the large
number of already performed and published experiments,
for which no coordinates are given and no standard refer-
ences have been established. Therefore, all available
connectivity databases and data collations (Burns 1997;
Felleman & Van Essen 1991; Scannell et al. 1995; Young
1993) had to adopt a pragmatic method to make use of
the published data. An a priori `reference map’ was de¢ned
to which all the published ¢ndings were mapped,
according to the judgement and individual criteria of the
respective database collator. These judgements concerned
assumptions about the relations between the reference
map and all other maps, rules on how to deal with
contradictory ¢ndings, and so on. The areal relations for
mapping published data to the reference map essentially
had three di¡erent origins: (i) they resulted from self-
conducted comparisons of maps on topological grounds
(e.g. relative position of areas, relation of areas to
morphological landmarks such as sulci); (ii) they were
based on opinions on these matters published by other
authors; or (iii) they referred to experimental investiga-
tions speci¢cally designed to investigate the validity of a
given parcellation scheme (e.g. Geyer et al. 1996). Spatial
mapping of published data not being available, there is
little choice other than to use such criteria for the conver-
sion of data between di¡erent brain maps. However, areal
relations and other criteria underlying the transformation
should be explicitly represented by the database, other-
wise the transformation process to the reference map
remains opaque for anyone except the database
constructor. For example, Felleman & Van Essen (1991)
and Scannell et al. (1995) tabulated alternative schemes
for areas of their maps, but did not indicate clearly what
relationships were used for the transformations between
maps. Furthermore, the existing databases contain only
transformed data, so that it is di¤cult to reconstruct the
original data without returning to the primary reports.
Finally, existing databases do not allow an interrogator to

extract data into any user-de¢ned parcellation scheme,
but restrict the format of data output to their reference
map.

In spite of these problems, the existing databases repre-
sent important progress in neuroscience, as they are the
¢rst systematic attempts to integrate the huge amount of
published connectivity data. The important insights
gained by analytical studies in recent years (e.g. Hilgetag
et al. 1996; Hilgetag, Burns, O’Neill, Scannell & Young,
this issue; KÎtter & Sommer, this issue; Young 1992) into
cortical and thalamocortical organization and systems-
level structure^function relationships would have been
impossible without them. Also, the development of the
methodology described here bene¢ted considerably from
the experiences gained with the previous database
systems. However, to overcome the remaining methodo-
logical problems, we have formulated some general
conditions that a methodology for databases of neuroana-
tomical data system should meet.

(i) Objectivity: each data entry should be represented in
its original nomenclature and should be clearly refer-
enced.

(ii) Reproducibility: the mapping process should be
performed by clearly de¢ned algorithms to ensure
identical results for repeated transformations of the
same data and relations.

(iii) Transparency: all criteria of the mapping procedure
should be fully documented. Also, all available
opinions of di¡erent authors (both con£icting and
con¢rming) on relationships between maps should
be represented.

(iv) Flexibility: the data should be convertible to a freely
chosen target map.

(v) Simplicity: the method should be easily applicable to
already published data.

Based on these ¢ve criteria, we have developed a mathema-
tical methodology for the conversion of brain data between
di¡erent parcellation schemes: objective relational trans-
formation (ORT). In essence, ORT relies on (i) general
classi¢cations for brain data and for the logical relations
between cortical areas from di¡erent maps; (ii) a set of
transformation rules which operate on these classi¢cations
for the conversion of brain data between di¡erent cortical
maps; and (iii) graph-theoretical algorithms and ¢nite
automata for optimization of data conversion. ORTenables
databases to store brain data in their original parcellation
scheme and to convert the data from incongruent maps
objectively and reproducibly into any user-chosen cortical
parcellation scheme. In this way, data from di¡erent
sources can be integrated and made available for all kinds
of studies, e.g. analyses of cortical organization and struc-
ture^function relationships (e.g. Hilgetag et al. 1997;
Stephan et al., this issue) as well as modelling approaches.

In this paper, we present the various components of
ORT ¢rst by an informal general description, followed by
an explicit mathematical de¢nition. The reader who is
mainly interested in the principles of ORT can thus skip
the more formal parts. Some mathematical descriptions,
which are important for correct implementation of ORT-
based algorithms in databases but not central to the
understanding of the methodology, are described in
Appendix A. Whereas accounts of basic features of ORT
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have been published before (Stephan & KÎtter 1998,
1999), this article is the ¢rst complete description of this
methodology.

2. METHODS

(a) New classi¢cations for brain data: extension
and relation codes

The ¢rst step of developing a formal method for converting
brain data between di¡erent parcellation schemes is to de¢ne
both what information is needed for this process and how it can
be classi¢ed and represented. Furthermore, the chosen classi¢ca-
tions should apply to published data as easily and universally as
possible. We here present two such classi¢cations: one for the
information referring to a cortical area (extension codes) and
one for the logical relation between areas of di¡erent brain
maps (relation codes).

Any single neuroanatomical or neurophysiological datum on
the cerebral cortex can be understood as information being
valid for a restricted part of the cortex. For example, injecting
tracer substance into any given part of the cortex will label some
areas whereas others will remain unlabelled. But even within
one speci¢c area, this information can be further speci¢ed. For
example, an area labelled by tracer substance may be
completely labelled, it may be only partially labelled or just the
existence of label but not its extent may be known.

Based on these considerations, one can classify brain data
according to the extent to which their information is valid for a
speci¢c cortical area A. We call this classi¢cation the extension
codes (ECs) and distinguish ¢ve cases (¢gure 1):

(i) EC (A) ˆ N: the information is valid for no part of A.
(ii) EC (A) ˆ P: the information is valid partially for A,

i.e. there are subparts for which it is not valid.
(iii) EC (A) ˆ C: the information is valid for the complete extent

of A, i.e. for every subpart of A.
(iv) EC (A) ˆ X: the information exists for A, i.e. due to lack of

precise information it is valid at least for a part of A,
maybe even for its complete extent.

(v) EC (A) ˆ U: it is unknown whether and to what extent the
information is valid for A.

In the following mathematical descriptions, the set CEC is
de¢ned to contain these ¢ve ECs, i.e. CEC ˆ fN, P, X, C, Ug.

It should be noted that this classi¢cation is independent of
the actual modality of the brain datum, i.e. it can be used to
describe both structural (e.g. labelled neurons, transmitter,
enzyme or receptor distributions) and functional data (e.g.
patterns of activated cortical areas at a given point of time). The
actual application of the ECs, however, varies depending on

whether one treats cortical areas as three-dimensional or
idealized two-dimensional objects. Although ECs are principally
applicable in both cases, the second option that abstracts from the
spatial laminar locations of, for example, labelled neurons within
an area and instead describes the extent of the information after
projection on to a two-dimensional plane (see ¢gure 1), usually is
more appropriate for cortical data. The simple reason for this is
that a large proportion of the available data in the literature
predominantly provides two-dimensional information, for
example by surface views on labelled areas in tracer studies.

One of the consequences of inter-individual variability of
brain shape and folding is that comparing two di¡erent parcel-
lation schemes means to implicitly assume a s̀tandard’ or `refer-
ence cortex’ on which the two maps are simultaneously
projected. Various authors have compared di¡erent parcellation
schemes (e.g. von Bonin & Bailey 1947; Felleman & Van Essen
1991; Preuss & Goldman-Rakic 1991a,b), but no formal classi¢-
cation for the relation of two areas A and B in two di¡erent
maps A’ and B’ has been presented so far. We therefore devel-
oped the following classi¢cation of relation codes (RCs), which
covers all possible logical relations that such areas A and B can
possibly have on a standard cortex (¢gure 2).

(i) RC (A, B) ˆ I: A and B have identical boundaries.
(ii) RC (A, B) ˆ S: A is a sub-areaof B, i.e. A is contained by B.

(iii) RC (A, B) ˆ L: A is larger than B, i.e. A contains B.
(iv) RC (A, B) ˆ O: A and B overlap, i.e. A covers some parts of

the standardcortexwhich is not coveredby B and vice versa.
(v) RC (A, B) ˆ D: A and B are disjoint, i.e. A and B are not

coextensive on the standard cortex in any way.

In the following mathematical descriptions, the set CRC is
de¢ned to contain the four non-disjoint RCs, i.e. CRC
ˆ fI, S, L, Og.

(b) The algebra of transformation (AT )
Based on the two sets CEC and CRC, we can now formulate

simple rules as small building blocks of a general answer to our
initial question: How can we transform a speci¢c piece of infor-
mation (i.e. one or several ECs) from one map to another, given
that we know about the relations (RCs) of the involved areas of
both maps?

If we look at some simple situations, we can see the result
immediatelyöor we see that there is no unequivocal result at
all. Figure 3 shows four such simple examples: we here deal
with two areas A1 and A2 of a source map A’ and an area B of a
target map B’ with A1 being a sub-area of B (i.e. RC(A1, B) ˆ S)
and A2 overlapping with B (i.e. RC(A2, B) ˆ O).

If A1 contains no information (EC(A1) ˆ N) whereas A2
contains complete information (EC(A2) ˆ C), then trans-
formation to area B in the target map B’ results in EC(B) ˆ P

Objective relational transformation (ORT ) K. E. Stephan and others 39
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N P X C

?

Figure 1. Extension codes (ECs) for the classi¢cation of brain
data according to the extent that their information is valid for
a given cortical area. N, the information is valid for no part of
the area. P, the information is partially valid for the area.
X, the information exists, i.e. it is valid at least for a part of
the area, maybe even for its complete extent. C, the informa-
tion is valid for the complete extent of the area.

I S L O

A B

Figure 2. Relation codes (RCs) for the classi¢cation of
relations between cortical areas from di¡erent maps.
RC(A, B) ˆ I: A and B have identical boundaries.
RC(A, B) ˆ S: A is a sub-area of B. RC(A, B) ˆ L: A is a
larger area than B, i.e. A includes B. RC(A, B) ˆ O: A and B
overlap, i.e. they are partially coextensive.
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(¢gure 3a). If, however, A2 only carries partial information
(EC(A2) ˆ P), then we cannot decide unambiguously: depending
on the exact spatial location of the information (which we do
not know), the result for area B might either be EC(B) ˆ P or
EC(B) ˆ N (¢gure 3b). This ambiguity is resolved, however, if
A1 carries partial information (EC(A1) ˆ P) as well (¢gure 3c).
Then the information of A2 no longer matters (as we will see
later, partial information of a sub-area dominates over any other
information). It does matter though, if the information
contained by A1 is not partial, but complete (EC(A1) ˆ C). Then
the spatial location and the extent of the information contained
by A2 decides whether EC(B) ˆ P or EC(B) ˆ C. As we are
certain about the validity of the information for B but cannot
determine the extent to which it is valid, this situation is consis-
tent with the above de¢nition of the existing EC, i.e. EC(B) ˆ X
(¢gure 3d ).

Constellations can become much more complex than these
simple examples, though. Furthermore, the amount of data
stored by databases is far too large for manual handling and
requires automatic, observer-independent processing. Therefore,
we have to make the parcellation problem accessible for an algo-
rithmic approach. In other words, we need a formal description
for a set of general transformation rules operating on our two
sets CEC and CRC. In computer science, such a construction of
several sets and operations is called a `heterogeneous algebra’
(GÏting 1992). In the following, we will therefore refer to this set
of rules as the àlgebra of transformation’or simply AT.

For sub- and overlapping areas, the general principle of our
AT is as follows: imagine we intend to convert information
about an area A from map A’ to map B’. First, we have to ¢nd
all areas B1, : : :, Bm (m51) in map B’ that are coextensive in
some way with area A on standard cortex and thus are the
target areas of the mapping process. Then, for each area Bk
(14k4m), we have to determine all areas A1, : : :, An (n51) in
map A’ which, together with A, are coextensive in some way
with area Bk. We decide step-by-step how the information of
each of the areas A1, : : :, An is converted to area Bk. At each
step we ¢rst consider what we know about the information of Bk
so far. We call this result of previous transformations ECprev(Bk).
Then we turn to the currently processed area Ai (14i4n) of
map A’, determine its relation to Bk (i.e. RC(Ai, Bk)) and its
information (i.e. EC(Ai)) and use the appropriate rule (see table
1) for the triplet (ECprev(Bk), RC(Ai, Bk), EC(Ai)). The trans-
formation rule delivers a temporarily resulting EC for Bk, which

we call ECres(Bk). This ECres(Bk) serves as input (i.e. as
ECprev(Bk)) for the next step. Having completed the procedure
for all areas A1, : : :, An, we get the ¢nal ECres(Bk). For the
moment, we will refrain from discussing whether the order in
which A1, : : :, An are processed has any in£uence on the ¢nal
result (see below and Appendix B).

It is important to note that the iterative procedure described
above has to be applied only if n41, that is, if there is more than
one area in map A’ which is coextensive with area B of map B’
(e.g. several sub-areas or overlapping areas). Only in this case,
we need several steps to compute the resulting EC for area B.
Thus, we call the respective operation `multistep operation’ or
`multistep mapping’ (MM). If, however, there is only one area A
in map A’ that is larger than or identical with area B of map B’
(i.e. RC(A, B) ˆ L or RC(A, B) ˆ I), then the procedure is much
simpler. As we can perform the mapping process in one single
step we do not need to take into account intermediate results
such as our ECprev above. Instead, all we need to know in this
case is the relation between the two areas (i.e. RC(A, B)) and
the information about area A (i.e. EC(A)). We call this function
the s̀ingle-step operation’or `single-step mapping’ (MS).

For formal reasons, the multistep operation MM requires an
additional EC B̀’ to mark the special situation of the beginning
of the transformation. As MM is only necessary for transforming
S- and O-relations (see above), it is generally de¢ned as

MM:(CEC [ fBg) £ fS,Og£ CEC ! CEC . (1)

The single-step operation MS for mapping identical or larger
areas is generally de¢ned as

MS:fI ,Lg£ CEC ! CEC . (2)

The exact speci¢cation of these mappings is given in tables 1
and 2.

Finally, it should be noted that the ATde¢ned here is only one
among several possibilities. It may vary in order to adapt to
requirements of speci¢c data modalities (for example, correct
processing of explicitly absent projections in connectivity data
requires additional ECs and transformation rulesösee Appendix
C). For the sake of simplicity, we here describe a basic version of
a general AT whose operation MM lacks commutative properties
(see ¢gure 4), that is, the ¢nal result of a transformation is not
completely independent of the order in which the respective
areas are processed by the AT. From a mathematical point of
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(a) (b) (c) (d )

A1

B

?

?

?

?

?

?

A2

Figure 3. Four examples of simple EC^RC constellations. For all examples RC(A1, B) ˆ S, RC(A2, B) ˆ O. (a) EC(A1) ˆ N,
EC(A2) ˆ C, resulting EC(B) ˆ P. (b) EC(A1) ˆ N, EC(A2) ˆ P, resulting EC(B) ˆ U. (c) EC(A1) ˆ P, EC(A2) ˆ P, resulting
EC(B) ˆ P. (d ) EC(A1) ˆ C, EC(A2) ˆ P, resulting EC(B) ˆ X.
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view, therefore, the procedure described above is not `well
de¢ned’. Slight modi¢cations of the simple AT described here,
however, are su¤cient to render the operation MM commutative
and to overcome this drawback (see Appendix B).

(c) A formal description of the transformation
process

Based on the above introduction to the AT, the next two
sections give a formal mathematical description of the entire
transformationprocess between two areas of di¡erent maps. The
formal accuracy of this and the following section is intended to
give a guideline for implementation of ORT algorithms in data-
bases. Readers who are interested in the main principles of ORT
only may therefore skip these two sections.

Before starting with the formal description, however, a
conceptual prerequisite is necessary in order to make mathema-
tical conventions of set theory applicable to cortical areas.Within
the following description, we envisage a s̀tandard brain’ whose
cortical surface ( s̀tandard cortex’) is divided into a ¢nite number
of small patches each of which may be called an èlementary
micro-area’ (EMA).These EMAs are thought to be small enough
to lie within any of the areas that would result from simultaneous
projection of all existing cortical maps on to the standard cortex.
Each cortical area of any cortical map is thus equivalent to a
¢nite, non-empty set of EMAs and accordingly, each brain map
is treated as a ¢nite, non-empty set of ¢nite, non-empty sets of
EMAs. In this way, we have de¢ned some formal units that are
compatible with operations from mathematical set theory. In the
following, if an operation, such as union or intersection, is
applied to cortical areas de¢ned in this way, then this operation is
understood as referring to the EMAs. For example, this conven-
tion allows us to describe two areas A and B of two di¡erent maps
which are coextensive on the standard cortex in some way (i.e.
RC(A, B) 6ˆD) by the statement A\B 6ˆ 1. Similarly, the situa-
tion of an area A in a cortical map A’ being equivalent to two
smaller sub-areas B1 and B2 in another map B’ can be expressed
as A ˆ B1[B2. Equipped with this conceptualization of cortical
areas and cortical maps, we can now describe the transformation
process formally.

Let A’ and B’ be two di¡erent parcellation schemes, i.e. two
sets of cortical areas:

A0 ˆ fA1,A2, : : :, Aag,a 5 1

B0 ˆ fB1,B2, : : :, Bbg,b 5 1.
(3)

The general question now is: How can we transform informa-
tion referring to a speci¢c area A¬ of map A’ (15¬5a) into
information referring to one or several areas of map B’?
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Table 1. Multistep operation MM of AT

(This table speci¢es the de¢nition of the multistep operation
MM: (CEC [ fBg)£fS, Og£CEC !CEC describing the constell-
ations occurring during the transformation of information to
an area B from several sub- or overlapping areas Ai (i41).
ECprev(B) denotes the information mapped to B in previous
steps, RC(Ai, B) denotes the relation between Ai and B, and
EC(Ai) denotes the information of Ai that is currently mapped
to B. First three columns represent the triplet (ECprev(B),
RC(Ai, B), EC(Ai)), fourth column gives the resulting ECres
(B).)

ECprev(B) RC(Ai, B) EC(Ai) ECres(B)

B S N N
P P
X X
C C

O N N
P U
X U
C C

N S N N
P P
X P
C P

O N N
P U
X U
C P

U S N U
P P
X X
C X

O N U
P U
X U
C X

P S N P
P P
X P
C P

O N P
P P
X P
C P

X S N P
P P
X X
C X

O N P
P X
X X
C X

C S N P
P P
X X
C C

O N P
P X
X X
C C

Table 2. Single-step operation MS of AT

(This table speci¢es the single-step operation MS: fI, Lg
£CEC!CEC describing the transformation of information to
an area B from an identical or larger area A. RC(A, B)
denotes the relation between A and B, EC(A) denotes the
information of A that is being mapped to B. First two columns
represent the pair (RC(A, B), EC(A)), third column gives the
resulting ECres (B). )

RC(A,B) EC(A) ECres(B)

I N N
P P
X X
C C

L N N
P U
X U
C C
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First, we have to determine to which areas of map B’ the
information of area A¬ will be converted. In other words, we
have to ¢nd all areas Bk of B’ which are coextensive with area
A¬ in some way.

©B ˆ fBk 2 B0jBk \ A¬ 6ˆ 1, 1 4 k 4 bg. (4)

For each area Bk2 ©B , we now have to determine what informa-
tion it will contain as a result of the transformationprocess.That
is, we have to ¢nd all areas Aj of map A’ which are coextensive
with area Bk in some way and whose ECs must therefore be
integrated by means of the algebra operations to yield a resulting
EC for Bk:

©k
A ˆ fAj 2 A0jAj \ Bk 6ˆ 1, 1 4 j 4 ag. (5)

Please note that ©k
A is always de¢ned with reference to the Bk for

which the transformation is currently performed. Due to its
de¢nition and that of ©B, ©k

A at least contains A¬.
As the indices of the areas of ©k

A are not necessarily in
consecutive order, we need a set of nested indices ¡ k to facili-
tate our operations on ©k

A (see equations (8c), (8d ), (13) and
(17) for examples).

¡ k ˆ i1,i2, : : :, inj(Ai1 2 ©k
A, : : :, Ain 2 ©k

A) ^
[n

xˆ1

Aix ˆ ©k
A

³ f1,2, : : :, ag. (6)

©k
A is the minimal set of areas from A’ that, as a uni¢ed piece of

cortex, is identical with or contains Bk. Therefore, each of its
constituent areas Aix (14x4n) necessarily contributes to the
information that Bk will have as the result of the transforma-
tion:

©k
A ˆ

[n

xˆ1

Aix ´ Bk

 !
^ ((©k

AnfAiy g) » Bk) (1 4 y 4 n). (7)

Depending on the relation between our initial area A¬ and our
currently investigated area Bk, we can now apply the appro-
priate algebra operation to each area of ©k

A. If the initial area
A¬ is identical with or larger than Bk, then A¬ is the only
member of ©k

A, so we apply the single-step operation MS of the
following algebra.

If RC(A¬,Bk) ˆ I, then

j©Bj ˆ 1,j©k
Aj ˆ 1,

ECres ˆ MS(I ,EC(A¬)). (8a)

If RC(A¬,Bk) ˆ L, then

j©Bj41,j©k
Aj ˆ 1,

ECres ˆ MS(L,EC(A¬)). (8b)

If the initial area A¬ is a sub-area of or overlapping with Bk,
then ©k

A has more elements than just A¬. We therefore iteratively
apply the multistep operation MM of the algebra, using the
resulting EC from one operation as the input for the next (in the
following two formulas, RCix and ECix are used synonymously
for RC(Aix , Bk) and EC(Aix ), respectively).

If RC(A¬,Bk) ˆ S, then

j©B j ˆ 1,j©k
A j41,

ECresˆMM(: : : MM(MM(B,RCi1 ,ECi1 ),RCi2 ,ECi2 ) : : :),RCin ,ECin ).

(8c)

If RC(A¬,Bk) ˆ O, then

j©B j41,j©k
Aj41,

ECresˆMM(: : : MM(MM(B,RCi1 ,ECi1 ),RCi2 ,ECi2 ) : : :),RCin ,ECin ).

(8d)

Figure 4 shows a simple example how this formal description
can be understood in practice.

(d) Speci¢c problems of transforming connectivity
data

Connectivity data play a key role in analyses of brain orga-
nization and thus also in attempts to establish databases (see
} 1). Therefore, we describe the main principles of how ORT
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A4

B

?

?

?

?

?

?

A1

A3

A2

Figure 4. A simple example for the use of the multistep
operation MM in a transformation process. Relations between
areas A1 to A4 and B are RC(A1, B) ˆ RC(A2, B) ˆ O,
RC(A3, B) ˆ RC(A4, B) ˆ S. Information contained by A1 to
A4 is EC(A1) ˆ P, EC(A2) ˆ C, EC(A3) ˆ X, EC(A4) ˆ N. The
iterative transformation process includes a step for each area,
using the result from the previous step as input for the current
one: 1. MM(B, RC(A1, B), EC(A1)) ˆ U, 2. MM(U, RC
(A2, B), EC(A2)) ˆ X, 3. MM(X, RC(A3, B), EC(A3)) ˆ X, 4.
MM(X, RC(A4, B), EC(A4)) ˆ P. In one line, this can be
written as MM(MM(MM(MM(B, RC(A1, B), EC(A1)),
RC(A2, B), EC(A2)), RC(A3, B), EC(A3)), RC(A4, B),
EC(A4)) ˆ P (compare equations (8c) and (8d )). This ¢gure
also exempli¢es the lack of commutative properties of MM

(see Appendix B): if the areas are processed in the order
4^1^2^3, MM does not deliver a partial EC but ECres ˆ X.
This restriction, although not serious because of the similarity
of partial and existing ECs, can easily be overcome by
enhanced algebras with commutative properties (see
Appendix B).
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can be adapted to this speci¢c class of brain data. Transforming
connectivity data requires speci¢c considerations for the simple
reason that we do not deal only with a source map and target
map between which transformation takes place, but every
projection also consists of a source and a target area. Their
information must be transformed separately while nevertheless
considering their mutual context. In essence, there are three
main points.

First, the principles of transformation outlined above have to
be applied to both the source and target area. The resulting
ECs can then be put together to yield a so-called projection
code (PrC). However, the ECs of the injected site and of the
labelled site (anterograde tracer: injection in the source area of
the projection, label in the target area of the projection; retro-
grade tracer: vice versa) bear slightly di¡erent meanings. The
EC of the injected site describes only the spread of injected
tracer substance and does not state which proportion of
somata^terminals from the injected site actually take up and
transport tracer substance to the labelled area. On the
contrary, the EC of the labelled site describes the actual extent
of somata^terminals within the labelled area that receive asso-
ciation ¢bres from the injected site. Furthermore, many tracer
studies have demonstrated that association ¢bres from an area
A to another area B often do not originate throughout the
whole extent of A (for example, see Bates & Goldman-Rakic
1993; Luppino et al. 1993). This means that injections of
di¡erent extent and position within the injected site may lead
to di¡erent and seemingly contradictory ECs of the labelled
site. For example, a partial injection of anterograde tracer into
area A might fail to produce label in area B. However, this
does not preclude that a partial anterograde injection into
another subpart of A or a complete anterograde injection into
area A might lead to labelling of area B. In large databases
comprising many di¡erent studies, such di¤culties can be
overcome by data-mining methods in combination with ORT.
Although a detailed description of such methods is beyond the
limits of this article, one option is to analyse redundant reports
on both antero- and retrogradely traced projections. Such an
approach has been implemented in the database CoCoMac-
Tracer (see } 4).

Second, projections that are explicitly stated to be absent (i.e.
EC ˆN for the labelled area) require additional steps to prevent
conversion of absent projections into existing ones (false posi-
tives) or vice versa (false negatives) (see Appendix C for more
details).

Third, any given area Aj 2 ©k
A contains di¡erent information

(i.e. di¡erent ECs) in the context of di¡erent projections. We
therefore need to describe formally which ECs of all the projec-
tions that A j participates in are integrated for a given area
Bk 2 ©B. Thereby it has to be distinguished whether Bk is the
source area or target area of the projection being transformed.
This section describes the process in a formal way.

Assume that we intend to transform the projection

P¬:Ap

EC(Ap)EC(Aq)
¡¡¡¡¡¡¡¡¡! Aq(1 4 p, q 4 a) (9)

from map A’ to map B’. Dealing with the transformation of the
information of the source area Ap ¢rst, we have

X
B

ˆ fBs 2 B0jBs \ Ap 6ˆ 1,1 4 s 4 bg (10)

as the set of those areas in map B’ which overlap in some way
with the source area Ap of our projection P¬. Then for each area
Bs 2 §B we determine
X s

A
ˆ fAf 2 A0jAf \ Bs 6ˆ 1,1 4 f 4 ag (11)

as the set of those areas in map A’ which overlap in some way
with area Bs. Please note that in analogy to equation (5), § s

A is
always de¢ned with reference to the area Bs for which the trans-
formation is currently performed. Due to its de¢nition and that
of §B, § s

A at least contains Ap.
In correspondence with equation (6), we now determine the

index set ¡ s for the areas of § s
A :

¡ sˆ i1 ,i2, . . . , inj(Ai12§ s
A , . . . , Ain2§ s

A)^
[n

xˆ1

Aixˆ§ s
A

³f1,2,. . . ,ag (12)

Now we can list the projections «1, : : :, «n originating from
the areas in § s

A and terminating at the target area Aq of our
initial projection P¬ (note that 9v,1 4 v 4 n:«v ˆ P¬):

«1 :Ai1 ! Aq , . . . , «n:Ain ! A q. (13)

The ECs of the source areas of these projections are then
integrated iteratively by the algebra operations (see equations
(8a)^(8d )) that yield the resulting EC(Bs).

We proceed correspondingly for the target area Aq of our
projection P¬:

TB ˆ fBt 2 B0jBt \ Aq 6ˆ 1; 1 4 t 4 bg, (14)

T t
A ˆ fAg 2 A0jAg \ Bt 6ˆ 1,1 4 g 4 ag, (15)

¡ tˆ j1, j2, . . . , jmj(Aj12T t
A , . . . ,Ajm2T t

A)^
[m

yˆ1

AjyˆT t
A ³f1,2,. . . ,ag.

(16)

The projections ª 1, : : :, ªm originating from the source area Ap
of P¬ and terminating in the areas of T t

A are the following (note
that 9w,1 4 w 4 m:ªw ˆ P¬):

ª 1:Ap ! Aj1 , . . . , Ám:Ap ! A jm . (17)

The ECs of the target areas of these projections are then inte-
grated by the algebra operations (see equations (8a)^(8d )) that
yield the resulting ECres(Bt).

Having computed a resulting EC for each Bs 2 §B, and for
each Bt 2 TB, we ¢nally determine the Cartesian product
§B £ TB:

£(P¬) ˆ §B £ TB ˆ f(Bs ,Bt)jBs 2 §B,Bt 2 TBg. (18)

The set £(P¬) comprises all projections in map B’ which result
from the transformationof the projection P¬ in map A’.To further
specify these projections we determine their PrCs by simply
concatenating the ECs of their source and target areas (see
Appendix A for the de¢nition of the concatenationoperator .):

PrC(Bs,Bt) ˆ EC(Bs) ° EC(Bt) (Bs 2 §B,Bt 2 TB). (19)

(e) The problem of unknown relations
The principles described so far presume that the relations (i.e.

RCs) of the concerned areas are known. Unfortunately, each
author introducing a new parcellation scheme can at best
compare the new map to a few others, leaving the large majority
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of existing parcellation schemes unmentioned. Consequently, our
knowledge about the relations of arbitrary pairs of maps is rather
limited.We therefore need a method to infer new knowledge from
existing knowledge, that is, to deduce relations hitherto
unknown from the ones described in the literature.

ORT incorporates such a method based on graph-theoretical
concepts. The main principle is to represent all available knowl-
edge about areas from di¡erent maps and their relations as a
graph, i.e. as a set of nodes connected by a set of edges. In our
case, the nodes represent all areas of all known maps and two
nodes are connected by an edge if there is a known relation
between the respective areas.We call such a graph a transforma-
tion graph (¢gure 5 shows an example) and any sequence of
nodes being connected by edges a transformation path (see
Appendices D and G for the precise de¢nitions).

If we want to derive an unknown relation between two areas
A and C of di¡erent maps (i.e. a missing edge between two
nodes A and C of the transformation graph), we must try to ¢nd
a bypass via intermediate nodes B1, : : :, Bn(n 5 1). In other
words, similar to a driver who copes with an unfamiliar route
from city A to city C by consecutively choosing familiar routes
from city A to city B1, from city B1 to city B2, : : :, from city Bn
to city C, we have to ¢nd a transformation path that connects
the nodes A and C indirectly.

For this purpose, we have adapted a standard algorithm from
graph-theory ( àll-pairs-shortest-path’ algorithm by Floyd),
which determines optimal paths between all pairs of nodes
(Floyd 1962; GÏting 1992). Adapting this algorithm to the
speci¢c conditions of our transformation graph was aggravated
by two main problems:

(i) Validity: as some sequences of RCs do not allow unambig-
uous interpretation (see ½ 2(f )), not all transformation
paths are a valid expression for an unknown relation.
Therefore, we need an e¡ective method to decide whether
a given transformationpath is ambiguous or not.

(ii) Optimality: at each step, Floyd’s algorithm compares all
possible alternative paths between two given nodes
according to a given measure of optimality (see ½ 2(f )). We
need to de¢ne such a measure of optimality that is appro-
priate for our context.

We will describe our solution to these problems ¢rst, then give a
description of our adaptation of Floyd’s graph-algorithm.

(f) Validity and optimality of transformation paths
As mentioned above, there can be di¤culties when we try to

derive an unknown relation between two areas A and C of
di¡erent maps by ¢nding a transformation path via intermediate
areas B1 , : : :, Bn of n di¡erent maps (n51). This problem is due
to the fact that the RCs (which de¢ne the edges of the path)
abstract from the exact spatial locations that two areas of
di¡erent maps would have on a standard cortex. Certain
sequences of relations can therefore be interpreted ambiguously.
For example, envisage two areas A and C of di¡erent maps A’
and C’ whose relation we do not know. Suppose further that we
know an area B of a map B’ which overlaps with both area A
and area C (i.e. RC(A, B) ˆ O; RC(B, C) ˆ O). Unfortunately,
this information does not help us: depending on the absolute
spatial extent of the twofold overlap, areas A and C can either
still overlap or be completely disjoint (see ¢gure 7c). In addition
to this case, there are some further constellations that also lead
to ambiguous results (¢gure 7 illustrates this schematically).
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BP89-V46

B09-9

BB47-FD D PG91-46d

W40-46

IL S

IS SS

I

IL

S

SS S

Figure 5. A simple example of a transformation graph
consisting of ¢ve areas. Abbreviations are as follows:
B09^9, area 9 of Brodmann (1909); BB47-FDD, area FDD
of von Bonin & Bailey (1947); BP89-V46, area V46 of
Barbas & Pandya (1989); PG91-46d, area 46d of Preuss &
Goldman-Rakic (1991a); and W40-46, area 46 of Walker
(1940). Edges are represented by bold and broken arrows.
Bold arrows designate initially known relations between
areas, broken arrows show initially unknown relations that
are deduced by graph-theoretical optimisation. Labels of
arrows designate the transformation path codes. Note that
for each pair of related areas, this ¢gure shows only one
relation^arrow; the reverse relations^arrows have been left
out to maintain clarity of the diagram.

(a)

A

A
B
C
D

B C
S S

(c)

A B C
L S

(d )

A B DC
L O S

(b)

A B C
L L

Figure 6. Examples of valid transformation paths.
(a) A path represented by the transformation path code
SS (path category L2). (b) A path represented by the
transformation path code LL (path category L3). (c) Three
paths, each represented by the transformation path code LS
(path category L4), demonstrate that a sequence of L- and
S-relations represents a valid path, but can yield three
di¡erent resulting relations (RCres(A, C) ˆ S/O/L).
(d ) Three paths, each represented by the transformation path
code LOS (path category L4), demonstrate that the additional
occurrence of a single O-relation between sequences of L- and
S-relations still maintains validity and yields the same three
di¡erent resulting RCs as for (c).
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To deal with this problem, ORT uses methods from theore-
tical computer science: formal languages and ¢nite automata
(see Appendices E and F for details of all following descriptions).
The main principle is to identify each transformation path by
the word that is created by concatenating the RCs of its edges.
Regarding the RCs thus as an alphabet, we de¢ne a formal
language L whose words are created by all possible combina-
tions of RCs; these words (transformation path codes) then
represent all potential transformation paths. We can subdivide
L into two subsets: one subset L+ comprises words representing
valid (unambiguous) transformation paths (¢gure 6); another
subset L0 contains words representing invalid (ambiguous)
transformation paths (¢gure 7). We are then able to de¢ne a
¢nite automaton which reads step by step any given word
w 2 L and decides whether it belongs to L+ or to L0 and thus
whether the transformation path represented by w is valid or
not. Further speci¢cation is achieved by subdividing L+ into
¢ve subsets L1 to L5, the path categories. These represent trans-
formation paths with equivalent structure, i.e. transformation
paths are equal within and are di¡erent between path cate-
gories with respect to their probability of creating ambiguous
constellations for the AT. For example, a path consisting of an
arbitrary number of S-relations will never lead to ambiguities,
whereas a path with a single O-relation may well do (see table
1). The ¢nite automaton can be easily constructed to decide for
any given word from L to which of the six formal languages L0
to L5 it belongs (see ¢gure 8 for visualization of the auto-
maton). By ordering the path categories according to their
potential of creating ambiguities for the AT, we obtain a hier-
archy of optimality that allows us to choose between two alter-
native paths connecting the same nodes (see Appendices E and
F for the exact de¢nitions).

(g) Graph-theoretical deduction of formerly
unknown relations

We now brie£y summarize the principle of Floyd’s algorithm
and our adaptation for the deduction of new relations (see
Appendix H for details). For n areas of all known maps, the
initial transformation graph G0 consists of n nodes (n51) which
are connected by an edge whenever a relation is known for the
respective two areas. In G0, the edges are thus designated by the
RCs of the respective relations. Starting with this initial condi-
tion, the algorithm computes a sequence of graphs G0,
G1, : : :, Gn using transformation path codes for the insertion of
new edges and the substitution of existing ones by more favour-
able paths (note that the set CRC is a subset of L+, i.e. RCs are

transformations path codes with a length of 1). At each step, Gi
results from modi¢cation of Gi¡1 : evaluating every possible
combination of predecessors vj ( j50) and successors wk (k50)
of node i in the graph Gi, the algorithm determines whether the
intermediate node i may be used either to establish a hitherto
non-existing edge (vj, wk) or to relabel an already existing edge
(vj, wk). In both cases, the edge (vj, wk) is designated by the
concatenation of the transformation path codes of the edges (vj,
i) and (i, wk). Also, the algorithm stores the actual sequence of
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(b)

A B C
O L
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(d)
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A

Figures 7. Examples of invalid transformation paths (path category L0). For each of the paths (a)̂ (d ) the upper row shows
possible spatial con¢gurations of the involved areas for which some coextension of the ¢rst and last area is present. The lower row
demonstrates that the areas of the same path may have relative positions for which the ¢rst and last area are no longer
coextensive on standard cortex.
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Figure 8. A ¢nite automaton for the detection of valid and
ambiguous transformation paths. Beginning at state
`START’, the automaton reads a given word w 2 L
representing a transformation path. Each RC evokes changes
of state as indicated by the labels of the arrows. The index of
the state in which the automaton terminates corresponds to
the index of the path category to which the word w belongs.
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areas vj, : : :, i, : : :, wk by which the nodes vj and wk are
connected (using this sequence, the ATcan later transform infor-
mation from area vj to area wk via the intermediate areas). After
n steps, the optimized transformation graph Gn is produced,
which contains all valid transformation paths with a minimal
potential of ambiguity (see Appendix H and the example in
¢gure 5).

Finally, it should be noted that con£icting information about
the relations of areas can lead to logically contradictory trans-
formation paths within the graph. For example, an area A of
map A’ may be stated by one author to be a sub-area of area B1
in map B’ whereas another author may consider the same area
A to be a sub-area of area B2 in the same map B’. These state-
ments obviously exclude each other logically. Therefore, it is
necessary to investigate the results of the graph-theoretical
optimization for inconsistencies and eliminate them from the
graph (see Appendix J for details).

3. PRACTICAL BENEFITS OF ORT: TWO EXAMPLES

Having described the theoretical principles of ORT, we
demonstrate its practical bene¢ts with the help of two
examples. These examples are of complementary char-
acter by illustrating how (i) the same data set can be
transformed to di¡erent parcellation schemes, and how
vice versa (ii) di¡erent data sets can be transformed to
the same parcellation scheme.

(a) Same data source, di¡erent target maps
First, we show how ORTcan be used for di¡erentiation

and control of analyses by juxtaposing results from an
analytical study on the functional connectivity of primate
cerebral cortex (Stephan et al., this issue). Using three
independent methods of analysis, this study demonstrated
the highly clustered structure of the functional cortical
network. The analyses were based on the database
CoCoMac-Stry, which contains data on functional
connectivity in macaque cortex (see } 4). With the help of
ORT, the original data were transformed to two di¡erent
parcellation schemes: one was the less-known parcellation
of McCulloch (1944), the other one was a `hybrid map’
composed of the well-known and still widely used parcel-
lations of Walker (1940) for the prefrontal cortex and von
Bonin & Bailey (1947) for the rest of the cortex. For
convenience, we here designate these two data sets as the
M̀-data’ (McCulloch) and H̀-data’ (hybrid), respectively.
Exactly the same analyses were applied to both data sets.
While Stephan et al. (this issue) presented only the results
from the H-data, we here directly juxtapose results from
balanced optimal set analysis (OSA; see Hilgetag et al.
1998; Hilgetag, Burns, O’Neill, Scannell & Young, this
issue, for details) on binarily classi¢ed data. The compar-
ison of the two resulting clusterplots (¢gure 9a,b) reveals
that, while the results were generally compatible, each
data set o¡ered slightly di¡erent perspectives. Both
¢gures clearly show the principal clusters of the functional
network that constantly emerged from all analyses
performed by this study: orbitofronto-temporal, visual
and somatomotor clusters. Without going into detail, it is
apparent, however, that the intrinsic composition of these
clusters showed variations between the two data sets
(compare ¢gure 9a and b). For example, the visual cluster,
which is a uni¢ed block in the H-data, is split into two

parts in the M-data. In the latter, the primary visual
cortex (area 17) clusters more strongly with temporal
visual areas surrounding the superior temporal sulcus
(areas 21, 22), whereas the extrastriate areas are part of a
second visual cluster (areas 18, 19, 20, 37). Interestingly, a
discernible, but rather unobtrusive feature of the H-data
became more obvious and di¡erentiated in the M-data: a
fourth small medio-frontal cluster of the H-data (fronto-
polar area 10 and subcallosal area FL) also appeared for
the M-data (areas 10 and 25), but additionally contained
several lateral and medial prefrontal areas (areas 8, 9, 32,
46) as well as anterior cingulate cortex (area 24).

These di¡erences illustrate that for a given set of data,
each target map has a speci¢c set of c̀ritical’ areas for
which mapping will be more di¤cult, due to their rela-
tions with corresponding areas of other maps. Mapping
the same set of connectivity data to di¡erent target maps
by ORT therefore produces networks with local
variances. Analyses using ORT-transformed data can
e¡ectively control uncertainty about potential transfor-
mation-evoked distortions of the data by performing
identical analyses simultaneously on several data sets
that were mapped from the same source to di¡erent
parcellation schemes. This approach allows us to
scrutinize the results of the analyses from di¡erent
perspectives and to assess their dependence on the trans-
formation process.

(b) Di¡erent data sources, same target map
As a second example, we illustrate the role of ORT for

the investigation of structure^function relationships. In
the following example, we juxtapose data on structural
and functional connectivity for the areas of the somato-
motor and visual cluster, which resulted from OSA of
functional connectivity in the macaque cerebral cortex
(see ½ 3(a)). The data on anatomical association ¢bre
connectivity (¢gure 10a) were taken from the database
CoCoMac-Tracer, the data on functional connectivity
(¢gure 10b) from the database CoCoMac-Stry (see } 4).
Both data sets were transformed by ORT into the same
parcellation scheme, i.e. the areas of the somatomotor
and visual cluster in the hybrid map (see ¢gure 9a) and
were thus made directly comparable. First, this allows us
to investigate the similarities and di¡erences between the
two data sets by simple inspection. For example, the two
matrices exhibit interesting di¡erences for the parietal
areas that show stronger functional interactions with the
somatosensory areas (see ¢gure 10b), although anatomic-
ally, they are more strongly connected with the visual
areas (¢gure 10a). Second, and much more importantly,
analytical or modelling approaches to the complex
structure^function relations of cerebral cortex (for example,
KÎtter & Sommer, this issue) are greatly facilitated whenthe
parcellation problem is removed by appropriate databases.
The simple example illustrates how ORT combined with
powerful databases can contribute to improving this situa-
tion. Finally, it should be noted that the matrices as displayed
here are just a `snapshot’ of the underlying databases as at
January 1999, especially the database CoCoMac-Tracer,
which still contains considerable `white spots’ for certain
cortical areas (see ¢gure 10a), and is continually being
improved andextended to ¢nally deliver a full account of the
structural cortical network in the macaque.

46 K. E. Stephan and others Objective relational transformation (ORT )

Phil.Trans. R. Soc. Lond. B (2000)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


Objective relational transformation (ORT ) K. E. Stephan and others 47

Phil. Trans. R. Soc. Lond. B (2000)

(a)

8A
8B

9
12
11
10
FL
TA
TE
OA
OB
OC
TC
IB

PCop
TB

FCop
13
IA
TG

A
TH
LA

PEp
FA
FB

FBA
PB
PC
PF
PG

PEm
46

FCBm
45
LC
TF

TEO

8A 8B 9 12 11 10
FL
TA T

E
O

A
O

B
O

C
T

C IB
P

C
op
T

B
F

C
op 13
IA
T

G A
T

H
L

A
PE

p
FA FB

F
B

A PB PC PF
PG

P
E

m 46
F

C
B

m 45
L

C T
F

T
E

O
0%

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

(b)

10
32
24
25
8
9

46
23
53
44
17
21
22
41
42
43
45
11
38
47
2
4

31
39
40
4s
1
3
5
6
7

18
36
19
37
28
29
20

10 32 24 25 8 9 46 23 53 44 17 21 22 41 42 43 45 11 38 47 2 4 31 39 40 4s 1 3 5 6 7 18 36 19 37 28 29 20

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 9. Two clusterplots resulting from optimal set analysis (OSA; see Hilgetag, Burns, O’Neill, Scannell & Young, this issue,
for details) under balanced conditions for the same data set (binarily classi¢ed data on functional connectivity in macaque
cerebral cortex; see Stephan et al., this issue, for details). Data matrices have been ordered to optimally re£ect the cluster
con¢guration of both results. Intensity of shading indicates relative strengths of association for pairs of areas. Note that both
results demonstrate the same general cluster con¢guration, i.e. predominant orbito-temporal, visual, and somatomotor clusters,
but show slightly varying composition of these clusters. (a) OSA results for data transformed by ORT to a hybrid map combining
Walker’s (1940) and Von Bonin & Bailey’s (1947) maps. (b) OSA results for data transformed to the map of McCulloch (1944).
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4. DISCUSSION

ORT is a simple, yet e¡ective method by which the
large amount of already published data can be trans-

formed into a common, descriptive space. The foremost
aspect of ORT is its coordinate-independence: mapping
is performed without an absolute spatial reference system
but is instead based on published statements about rela-
tive positions of areas in di¡erent maps (RCs). This
property accounts both for strengths and limitations of
ORT that we now discuss in more detail.

Beginning with the limits, in spite of all optimization
some EC^RC-constellations remain which yield no
unambiguous result for the algebra of transformation (see
tables 1 and 2). Although they are few and their occur-
rence is minimized by the graph-theoretical optimization
leading to transformation paths with least likelihood of
such constellations, they cannot be eliminated completely.
For most practical applications of ORT, however, this is no
serious restriction because the problem diminishes for
large data sets with many parcellation schemes and a high
degree of information redundancy. Such data sets result,
for example, from the collation of anatomical or functional
connectivity data from the numerous published studies (see
Stephan et al., this issue). In these cases, most pieces of
information are at least partially mirrored by data based
on other maps. It is therefore very likely that the impossi-
bility to transform an individual datum is compensated by
transforming the equivalent data from other maps.

Furthermore, one might question the validity of state-
ments concerning the relative positions of areas in di¡erent
maps, that is the RCs. A potential problem is that such
statements found in the literature can have very di¡erent
backgrounds. For example, some relations result from
simple topographical comparisons of di¡erent brain maps.
These comparisons usually determine the relative position
of areas by relating them to morphological landmarks such
as sulci. Sulci, however, are known to possess high inter-
individual variability and lack a consistent correlation
with cytoarchitectonically de¢ned areal borders (Zilles et
al. 1997). Therefore, these comparisons can be problematic,
at least if they concern areas of small size. Many other
comparisons, however, are based on actual experimental
investigations that established the relation of two di¡erent
parcellation schemes with high certainty. For example,
such experiments lead to the subdivision of architectoni-
cally de¢ned areas due to di¡erences in transmitter and
enzyme distributions, electrophysiological properties or
connectivity patterns (as examples, see Carmichael &
Price 1994; Geyer et al. 1996; Matelli et al. 1991). In this
context, it should be emphasized that the òbjectivity’ of
ORTdoes not mean to imply that ORT-mapped data are
`objectively correct’. Like previous databases, ORT
depends on a set of subjective notions from di¡erent
authors about the relations between di¡erent brain maps.
However, these relations and their algorithmic processing
are formalized (RCs and AT), their collation from the
literature is operationalized (see codes for the precision of
data description below) and within ORT-based databases
they are explicitly represented and linked to exact refer-
ences in the literature.Whenever the same set of relations is
used for transforming data by ORT, the same result will be
delivered, irrespective of any observer performing the
mapping. This observer-independency of the transforma-
tion on the basis of a given set of relations is what we denote
by the term òbjective’ in the acronym ORT. Also, for any
given transformation, the relations that were used and in
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Figure 10. Two matrices resulting from transformation of
anatomical and functional connectivity data, respectively, to
the same map by ORT. Connections^functional interactions
whose existence were demonstrated experimentally are
designated as 1, those which have explicitly found to be
absent are designated as 0. Matrices have been ordered
identically to allow a direct comparison. The areas shown
belong to the somatomotor and visual clusters of ¢gure 9 and
are named according to a hybrid map comprising the
parcellations of Von Bonin & Bailey (1947) and Walker
(1940). (a) Matrix of association ¢bre connectivity data from
the database CoCoMac-Tracer. Area names along the vertical
axis represent source areas, whereas area names along the
horizontal axis designate target areas of anatomical
projections. (b) Matrix of functional connectivity data from
the database CoCoMac-Stry. Area names along the vertical
axis represent stimulated areas, whereas area names along the
horizontal axis designate recorded areas.
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what way, are explicitly represented, thus the mapping
process is fully transparent.

Coordinate-independence is not only responsible for
potential problems of ambiguity, but also a¡ords
important advantages of ORT. It accounts for the rela-
tively simple, yet e¡ective, principles of ORT that can
easily be incorporated in algorithms within neuro-
scienti¢c database systems (see below). Most importantly,
coordinate-independence ensures that ORT makes very
few demands on the data it transforms. All it requires is
that they are described on the basis of a known parcella-
tion scheme. Only in this way can the huge amount of
data from already published studies (e.g. tracer studies)
be made accessible and comparable by their organization
in powerful databases.

Another question that should be addressed is whether
ORT is equally suitable for di¡erent modalities of brain
data. ORT, as it is described here, is primarily designed
for brain data of binary nature on a nominal scale (e.g.
existence or non-existence of transported tracer
substance in a given area). For such data, the necessary
algebra of transformation is relatively simple to de¢ne
(see tables 1 and 2). It becomes more complicated if
dealing with data that are still on a nominal scale but
show more than two disjoint classes (e.g. laminar
patterns of transported tracer substance). These cases can
still be coped with by extending the operations of the
algebra to include an additional factor (e.g. a code for
the laminar pattern), thus accounting for the special
properties of the transformed data. In this way, the
algebra operations do not only deliver a resulting EC but
also specify how the information as such is a¡ected by
the transformation. Other data types that are measured
on metric scales, such as quantitative measurements of
enzyme or receptor densities, however, seem to be
beyond the scope of ORT. Although scale transforma-
tions may prove useful for such conditions (e.g. transfer-
ring metric data to a nominal scale by applying an
appropriate threshold), a large proportion of the original
information would be lost. Therefore, metric data
require absolute spatial reference systems because the
degree of spatial overlap quantitatively determines the
outcome of the transformation.

Currently available spatial methods of mapping brain
data are parts of conventional or electronic atlas systems
(Mazziotta et al. 1995a,b; Roland & Zilles 1996; Talairach
& Tournoux 1988). A major issue addressed by these
more recent approaches is the intersubject spatial varia-
bility of the human brain. The classical brain maps from
the beginning of the 20th century were based on the
analysis of one or a few brains, and the maps were
presented as schematic drawings. Thus, such maps cannot
be used for spatial mapping purposes and do not re£ect
intersubject variability. However, even if the mapping is
performed by a real three-dimensional representation of
data, the problem of intersubject anatomical variability
must be solved. This is presently done by the development
of techniques that allow the linear and/or nonlinear
deformation of the three-dimensional data set of an indi-
vidual brain into a spatial reference system, e.g. an indivi-
dual `standard’ brain or an àverage’ brain constructed
from a large sample of individual brains. Presently, these
spatial maps are under development and contain only a

few architectonically de¢ned cortical units (Roland &
Zilles 1996).

There is yet another, very general, problem that
should be brie£y discussed in this context, that is the
integration of data from di¡erent sources. Data from
di¡erent studies may not only result from di¡erent
methods and may thus have di¡erent degrees of relia-
bility, but they also show obvious di¡erences in the
precision of data description. Due to the complicated
nature of this problem, we can only brie£y discuss some
implications for neuroscienti¢c databases. We would like
to point out especially that the implementation of ORT
within a given database system may vary depending on
the way in which this problem is handled. Since it is
di¤cult to assess the reliability and correctness of
published data, one might instead try to establish a
measure for potential errors in data collation due to
imprecise and ambiguous presentation. Such a measure
can be of particular importance when one has to decide
between alternative (and possibly con£icting) reports for
the same data. A possible approach is to de¢ne clear
criteria for measuring the precision of data description in
an individual publication on ordinal scale as objectively
and reproducibly as possible.We developed such a measure
(so-called PD codes; see Appendix I for a brief description)
and have used it for data coding within two databases (see
below). In these databases, we also used the PD codes in
connection with the graph-theoretical optimization within
ORT to facilitate the decision between alternative paths.
PD coding and its use within databases will be described in
detail in a forthcoming publication.

Finally, we would like to summarize in what way ORT
has been practically used so far. As mentioned above, we
have integrated ORT into two databases on structural and
functional cortical connectivity in the cerebral cortex of the
macaque (CoCoMac-Tracer and CoCoMac-Stry, respec-
tively). CoCoMac-Stry contains almost 4000 experimental
¢ndings from studies of strychnine neuronography (see
Stephan et al., this issue for details) and has been used for a
global analysis of the functional cortical network (Hilgetag
et al. 1997; Stephan et al., this issue). CoCoMac-Tracer, still
under construction, currently contains more than 10 000
reports about association ¢bre connectivity from tracer
studies, more than 150 di¡erent parcellation schemes and
more than 2200 relations between areas of di¡erent maps.
This database is being used for both experimental and theo-
retical studies, including biologically realistic computer
simulations, network analyses, and functional imaging
studies. Recently, it hasbeen used for the analysis of imaging
data in a study on the prefrontal cortex (Northo¡ et al.
2000). More information will soon be available at http://
www.cocomac.org. In both databases, ORT has proven to
be an e¡ective, easy-to-use approach that helps to overcome
the parcellation problem. Thus, these databases ful¢l the
¢ve criteria we formulated at the beginning: objectivity,
reproducibility, transparency, £exibility and simplicity. We
believe that databases like these will play an increasingly
important role in higher-orderanalyses of the structural and
functional organizationof the brain and for the investigation
of structure^function relations. The challenge will be to
extend ORT to other modalities than binary data and to
continue the development of spatial methods which allow
transformation of quantitative data on a metric scale.
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APPENDIX A. GENERAL DEFINITIONS

Within this article, we have adopted the nomenclature
of Hopcroft & Ullman (1979), GÏting (1992) and Rozen-
berg & Salooma (1997) for formal languages, ¢nite auto-
mata and graphs. We here give a brief summary of some
de¢nitions which are fundamental for an understanding
of this appendix.

An alphabet § is a ¢nite, non-empty set. The elements
of an alphabet § are called letters or symbols. A word over
an alphabet § is a ¢nite sequence of n letters (n50),
including the empty word e. Note that according to this
de¢nition, letters are words of the length1. If x ˆ x1x2 . . . xn

and y ˆ y1 y2 . . . ym(n,m50) are words over an alphabet §,
so is their concatenation x ° y (or simply xy) obtained by
writing x and y one after another: x ° y ˆ xy ˆ x1x2 . . .
xn y1 y2 . . . ym. For a given alphabet §, the set of all possible
words over § (including the empty word e) is de¢ned as §*

and the set of all non-empty words over § as §‡ ˆ§*\feg.
Observe that §* and §‡ are always in¢nite. A (formal)
language L over an alphabet § is a subset of the set of all
possible words over §, that is L ³ §*.

A ¢nite automaton (FA) is a ¢ve-tuple (Q , §, q0, F, ¯ ),
where Q is a ¢nite set of states, § is an input alphabet,
q0 2 Q is the initial state, F ³ Q is the set of ¢nal states, and
¯ is the transition function ¯:Q £ §* ! Q . The language
accepted by FA is the set L(FA)ˆfw 2§*j¯(q0,w)2Fg.

A directed graph (or digraph) G is a pair G ˆ (V, E), V
being a ¢nite, non-empty set of nodes, E ³ V £ V being
a set of edges. A path is a sequence of nodes v1, : : :, vm

(m52) so that 8i(14 i 4 m¡1):(vi,vi‡1)2E. The mapping
²:E ! X is a labelling function, which labels each of the
edges in E by a value from the set X.

APPENDIX B. DIFFERENT VERSIONS OF THE

ALGEBRA OF TRANSFORMATION

As pointed out in the main text, there is more than one
possibility to de¢ne an AT that operates on ECs and RCs.
For the sake of easy understanding, the main text describes a
rather simple version of an AT whose multistep operation
MM is not commutative, that is, the results of the iterative
application of MM partially depend on the order of the EC^
RC-constellations to which MM is applied. The variation
that can occur is a switch between partial (EC ˆP) and
existing (EC ˆX) ECs that bear very similar information.
Algebra operations delivering results of ECres ˆ N, or
ECres ˆ C, however, are completely una¡ected by the order
of the integrated ECs and RCs. The switch between partial
and existing ECs is due to the fact that for each step of the
algebra, the previous steps are not taken into account and
that therefore unknown ECs (EC ˆU) may conceal the

prior processing of sub-areas with àbsent’ information
(EC ˆN ). For example, the sequence MM(MM(MM
(B, S, X), O, P), S, N ) ˆ P processes such a sub-area at the
end and thus correctly delivers ECres ˆ P. The sequence
MM(MM(MM(B, S, N ), O, P), S, X) ˆ X, however, processes
this sub-area at the beginning and thus results in ECres ˆ X
(¢gure 4 illustrates a similar example).

There are several possibilities to de¢ne an algebra for
which the multistep operation MM has commutative
properties. For example, it would su¤ce to replace the
unknown EC (EC ˆU) by two substitutes UP and UX,
which indicate whether potential resolution of the uncer-
tainty by subsequent algebra operations leads to partial or
existing ECs (for example, MM(B, S, N), O, P) ˆ UP,
whereas MM(B, O, P), O, P) ˆ UX). This would prevent a
switch from partial to existing ECs and render the AT
completely independent of the order in which ECs and
RCs of a given area constellation are processed.

APPENDIX C. SPECIAL TREATMENT OF EXPLICITLY

ABSENT PROJECTIONS

Projections explicitly stated to be absent by tracer
investigations are characterized by the injection site
showing partial, existing or complete spread of injected
tracer substance (EC ˆP, X, C, respectively), whereas the
labelled site shows no transported tracer (EC ˆN ). Note
that for anterograde tracing the injected area is identical
with the source area, for retrograde tracing with the
target area of the projection. If we dealt with absent
projections in the same way as with existing ones, certain
constellations might lead to the conversion of absent
projections into existing ones or vice versa. Envisage, for
example, four areas A1 to A4 of a map A’ and two areas
B1, B2 of another map B’ with A1, A2 being sub-areas of
B1 and A3, A4 being sub-areas of B2. If one dealt with the
projections A1

XN¡! A3, A1
NX¡! A4, A2

NX¡! A3 and converted the
projection from A1 to A3 into map B as described for
existing projections (see equations (9)^(19)) one would
yield a resulting projection code of PrC (B1, B2) ˆ XX.
One straightforward way to prevent such errors is the
introduction of three further ECs that do not refer to the
existence, but to the non-existence of information.
According to the spread of tracer substance in the injected
area (EC ˆP, X, C), these ECs are designated as NP, NX,
NC, respectively, and are applied to injection sites only.
The AT can then be extended to include these ECs, e.g.
MM(C, S, NP) ˆ P, MM(B, O, NX) ˆ U.

APPENDIX D. DEFINITION OF A

TRANSFORMATION PATH

A transformation path P is a sequence of at least two
areas, each of which has a relation to both its predecessor
and successor and all of which are from di¡erent maps:

P ˆ A1,A2, : : :, An(n 5 2)is a transformation path ,
8i, j(1 4 i 4 n ¡ 1,1 4 j 4 n,i 6ˆ j):(RC(Ai,Ai‡1) 2 CRC)

^ (Ai and Aj are from different maps). (A1)

A transformation path code C of a given transformation
path P is de¢ned as the concatenation of the n ¡ 1 RCs by
which the areas from P are related to each other:
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C(P) ˆ r1r2 : : : rn¡1

(RC(Ai,Ai‡1) ˆ ri;Ai,Ai‡1

are areas in P;1 4 i 4 n ¡ 1).
(A2)

Note that according to this de¢nition RCs are transfor-
mation path codes of the length 1.

The resulting relation RCres(P) of a transformation path
P is de¢ned as the relation that the ¢rst area A1 and the last
area An of P have on standard cortex: RCres(P) ˆ RC(A1, An).
A transformation path P is valid if and only if its sequence of
RCs does not account for a possible spatial con¢guration of
the involvedareas on standardcortex for which the ¢rst and
the last area of P are no longer coextensive in some way.The
transformation path code C(P) is valid if and only if P is a
valid transformationpath. Formally:

RCres(P) 6ˆ D , P is valid , C(P) is valid. (A3)

For example, a transformation path in which a sequence
of L-relations is followed by a sequence of S-relations is
valid because it guarantees overlap of A1 and An (even
though the resulting RCs may vary; see ¢gure 6c). A path
with a reversal of this order, however, allows both
overlapping and disjoint positions of A1 and An (see ¢gure
7a) and is therefore invalid.

APPENDIX E. DEFINITION OF FORMAL LANGUAGES

THAT CHARACTERIZE PATH CATEGORIES

Considering the set CRC as an alphabet, we de¢ne the
formal language L to contain all possible combinations of
non-disjoint RCs with a minimum length of 1 (see
Appendix A for the de¢nition of the operators + and *):

L ˆ CRC
‡. (A4)

L thus comprises all potential transformation path codes
and can be further subdivided into subsets L+ (containing
all valid transformation path codes) and L0 (containing
all invalid transformation path codes): L ˆL+[L0. Valid
transformation paths possess di¡erent degrees of potential
ambiguity when used by the AT. For example, a mixed
sequence of I- and S-relations is unequivocal, whereas a
sequence of L-relations may well lead to ambiguities of
the AT (see tables 1 and 2). We de¢ne subsets L1 to L5 of
L+ as path categories whose transformation path codes
possess equivalent degrees of ambiguity:

L1 ˆ I‡

L2 ˆ (I*SI*)‡

L3 ˆ (I*LI*)‡

L4 ˆ (I*LI*)‡(I*SI*)‡ [ (I*LI*)‡I*OI*(I*S*I*)*

L5 ˆ I*OI*.

The set L0 of invalid transformation path codes then
simply is the di¡erence between L and L1^L5:

L0 ˆ L(L1 [ L2 [ L3 [ L4 [ L5)

ˆ LnL‡.
(A5)

The indices of L1^L5 express a hierarchical order: the
lower the index of a path category, the lower the prob-
ability that a path from this class may evoke ambiguous

constellations for the AT. L1^L2 and L3^L5 have very
similar degrees of potential ambiguity, respectively. Both
L1 and L2 will never cause ambiguities for the AT; still
we ranked L1 higher since the S-relations of L2 require
multistep operations of the algebra which are computa-
tionally more costly than the single-step operations of
the I-relations of L1. The same argument applies to L3
and L5 that also show similar degrees of potential ambi-
guity (compare O- and L-relations in tables 1 and 2). L4
takes an intermediate position, as a path P with C(P)2L4
can account for resulting relations RCres(P) ˆ L,
RCres(P) ˆ O and also RCres(P) ˆ S (see ¢gure 6c,d ). The
actual resulting relation of such a transformation path
can be derived by an analysis of its context. If P is a
transformation path P ˆA1, A2, : : :, An(n 5 2) and
C(P) 2 L4 then

RCres(P) ˆ L , (9 transformation path V such that

V ˆ A1, : : :, T and C(V) 2 (L3 [ L5),T 6ˆ An,T being

from the same map as An) ^ :(9 transformation path

W such that W ˆ An, : : :, U and C(W) 2 L‡, U 6ˆ A1,

U being from the same map as A1). (A6)

RCres(P) ˆ S , (9 transformation path V such that

V ˆ T , : : :, An,C(V) 2 (L2 [ L5),T 6ˆ A1,T being from

the same map as A1) ^ :(9 transformation path W

such that W ˆ U , : : :, A1 and C(W) 2 L‡,U 6ˆ An,

U being from the same map as An). (A7)

RCres(P) ˆ O , (9 transformation path V such that

V ˆ T , : : :, An,C(V) 2 (L2 [ L5), T 6ˆ A1, T being from

the same map as A1) ^ …9 transformation path W

such that W ˆ U , : : :, A1 and C(W) 2 (L2 [ L5),

U 6ˆ An,U being from the same map as An) ^ :
…9 transformation path X such that X ˆ A1, : : :, R

and C(X) 2 (L1 \ L2), R 6ˆ An, R being from the same

map as An). (A8)

Obviously, this analysis is only possible if there is a
su¤cient amount of information available on relations
between the two maps to which A1 and An belong. This
especially concerns the distinction between S- and O-
relations that have identical computational properties
as they both require the multistep mapping MM of the
AT (table 1) by which they are integrated with further
overlapping or sub-areas. In contrast to sub-areas,
however, there are some constellations for overlapping
areas that lead to resulting unknown ECs (ECres ˆ U).
That is, falsely assuming an overlapping area to be a
sub-area, one would be at risk to deliver false results.
Vice versa, if one falsely assumes a sub-area to be an
overlapping area, the worst case is to obtain an
unknown EC and thus no result at all (see table 1). If
one does not have a database with a su¤ciently large
amount of information about areal relations, one may
therefore pragmatically adopt a `worst-case behaviour’
by treating those paths from L4 as O-relations whose
resulting RCres(P) 6ˆ L.
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Summarizing our descriptions of path categories, the
resulting RCs of paths P1 and P2 whose transformation
path codes are members of the same path category Li
(1 4 i 4 5) are as follows:

C(P1), C(P2) 2 L1 ) RCres(P1) ˆ RCres(P2) ˆ I

C(P1), C(P2) 2 L2 ) RCres(P1) ˆ RCres(P2) ˆ S

C(P1), C(P2) 2 L3 ) RCres(P1) ˆ RCres(P2) ˆ L

C(P1), C(P2) 2 L4 ) RCres(P1), RCres(P2) 2 fS,L,Og
C(P1), C(P2) 2 L5 ) RCres(P1) ˆ RCres(P2) ˆ O. (A9)

APPENDIX F. DEFINITION OF A FINITE AUTOMATON

FOR THE DETECTION OF VALID AND AMBIGUOUS

PATHS

After de¢ning path categories as sets of equivalent
transformation paths, we formally de¢ne a FA that deter-
mines for any given word w 2L which path category it
belongs to (see general de¢nition of a FA in Appendix A):

FA ˆ (§,Q ,q0,F,¯) with § ˆ fI ,S,L,Ogˆ CRC

Q ˆ fSTART,0,1,2,3,4,5g
q0 ˆ START

F ˆ f1,2,3,4,5g
¯:Q £ §* ! Q as specified by figure 8.

(A10)

The regular language L(FA) that is recognized by FA
then equals the set of all valid transformation path codes:

L(FA) ˆ fx 2 §*j¯(q0,x) 2 Fg
ˆ L1 [ L2 [ L3 [ L4 [ L5 ˆ L‡. (A11)

APPENDIX G. DEFINITION OF A

TRANSFORMATION GRAPH

Within ORT, a transformation graph is a directed
graph with the following special characteristics: the set of
nodes V is a set of cortical areas from di¡erent brain
maps, and the set of edges E represents the relations
between these areas. Each path within a transformation
graph that does not include any two areas from the same
map meets the conditions of a transformation path (see
equation (A1)). The labelling function ²: E ! L‡ labels
edges with words w 2 L‡, that is valid transformation
path codes. Note, that L‡ ´ CRC and that thus edges of a
transformation graph can be labelled by both single RCs
and valid combinations thereof.

APPENDIX H. PRINCIPLES OF FLOYD’S ALGORITHM

AND DETAILS OF OUR ADAPTATION

Our adaptation of Floyd’s algorithm uses a function l:
L ! f0, : : :, 5g, which determines the path category of a
given word w 2 L by use of the automaton described
above: if w 2 Li(i 2 f0, : : :, 5g) then l(w) ˆ i. Providing
that the initial graph G0 consists of n nodes (n51), the
algorithm computes a sequence of graphs G0, G1, : : :, Gn.

At each step, Gi results from modi¢cation of
Gi¡1(1 4 i 4 n). Each graph Gi is de¢ned as follows:

(i) Gi has the same set of nodes as G0.
(ii) Gi has an edge (v, w) with ²(v, w) ˆ a,. There is a

transformation path P from node v to node w in G0
that includes only nodes of f1, : : :, ig and is repre-
sented by the transformation path code ¬ 2 L‡.

The ith step of the algorithm computes Gi out of Gi¡1

as follows. Let v1, : : :, vr be all predecessors and
w1, : : :, ws be all successors of node i in Gi¡1 (r, s50). All
pairs (vj, wk) are evaluated (04j4r, 04k4s) to see
whether the intermediate node i may be used either to
establish a hitherto non-existing edge (vj, wk) or to relabel
an already existing edge (vj, wk). If the sequence vj, i, wk is
a valid path (i.e. l(²(vj, i) . ²(i, wk)) 6ˆ 0 and vj and wk are
from di¡erent maps; see equation (A1)) then the following
criteria of optimality can be applied.

(i) If there is no edge (vj, wk) yet, then insert an edge
(vj, wk) with ²(vj, wk) ˆ ²(vj, i).²(i, wk).

(ii) If there already is an edge (vj, wk) and if
l(²(vj, i).²(i, wk))5l(²(vj, wk)),
then ²(vj, wk) ˆ ²(vj, i).²(i, wk).

In both cases, our algorithm not only stores the new
transformation path code ²(vj, i).²(i, wk) by labelling the
edge (vj, wk), but also stores the transformation path
vj, . . . , i, . . . , wk as such, that is the sequence of areas that
is represented by ²(vj, i).²(i, wk). After optimization of the
graph is completed, it is possible to look up very quickly
for any given pair of areas A, C from di¡erent maps:

(i) whether or not there is a path from A to C at all
(existence of the edge (A, C) within the graph);

(ii) what the relation between A and C is (resulting RC
as indicated by the path category of the transforma-
tion path code of the edge (A, C)); and

(iii) which intermediate areas B1, : : :, Bm (m50) will be
involved in mapping information from A to C
(sequence of areas contained by the transformation
path that is stored for the edge (A, C)).

APPENDIX I. CODING THE PRECISION OF DATA

DESCRIPTION (PD CODES)

The measure of optimality we described for the graph-
theoretical optimization is only one among several
di¡erent possibilities. Depending on the information avail-
able, it may have a more or less sophisticated structure. For
example, in addition to path categories the decision
between alternative paths might also take into account the
reliability of information on the involved relations, that is
the quality of statements in the literature on relations
between areas. Unfortunately, estimating the quality of
data as such is highly di¤cult. It is possible, however, to
determine the precision by which data are represented and
thus to assess their degree of ambiguity for the reader. We
have therefore developed a coding for the precision of data
description, the PD codes (see } 4). Here we brie£y
summarize the main principles. For each data modality, a
speci¢c set of criteria concerning its representation can be
de¢ned. For example, data about a cortical area being
(un)labelled by transported tracer substance can be

52 K. E. Stephan and others Objective relational transformation (ORT )

Phil.Trans. R. Soc. Lond. B (2000)

 rstb.royalsocietypublishing.orgDownloaded from 

http://rstb.royalsocietypublishing.org/


represented by textual descriptions, by tables, by drawn
¢gures, by photographs or by a combination of some or all
of these. Figures may or may not show clear areal borders,
speci¢c areal names and the exact extent of tracer
substance. Data on labelled neurons may be of qualitative
(nominal scale) or quantitative (ordinal or metric scale)
nature. Regarding each combination of such criteria as a
speci¢c case, one obtains a set of disjoint classes which can
be ordered hierarchically according to their potential
degree of ambiguity. By careful operationalization of the
applied criteria, this coding gains high observer-
independence and reproducibility. PD codes can be used
both within methods such as ORT and for di¡erentiated
representation of data from the literature in databases
such as CoCoMac-Tracer (see } 4).

APPENDIX J. ELIMINATING CONTRADICTORY PATHS

AFTER GRAPH-THEORETICAL OPTIMIZATION

This section describes how to systematically scan the
outcome of the graph-theoretical optimization for
logically contradictory paths resulting from incompatible
information on relations between di¡erent maps. First, we
investigate all paths originating from the same area of any
given source map and leading to the same target map.
That is, for each area A being a node of the transformation
graph and for each target map B’, we look for all paths that
originate in A and lead to di¡erent areas B1, : : :, Bp

within B’ (p51): A RC1¡! B1,A RC2¡! B2, : : :, A RCp
¡! Bp.

Contradiction occurs if area A is identical with, or a sub-
area of an area Bi (RCi2 fI, Sg) and has a further relation
(RCj2 fI, S, L, Og) with another area Bj of B’ (i, j4p,
i 6ˆ j):

9i, j 2 f1, : : :, pg, i 6ˆ j:

RCi 2 fI, Sg^ RCj 2 CRC. (A12)

Second, we investigate all paths originating in the same
source map and leading to the same area of any given
target map. That is, for each area B being a node of the
transformation graph and for each map A’, we look for
all paths that originate in areas A1, : : :, Aq of A’ (q51)
and lead to area B: A1

RC
¡! B, A2

RC2¡! B, : : :, Aq
RC1¡! B.

Contradiction occurs if an area Ai is identical with or
includes area B (RCi2 fI, Lg), and another area Aj of A’
has a further relation (RCj 2 fI, S, L, Og) with area
B (i, j4q, i 6ˆ j):

9i, j 2 f1, : : :, qg, i 6ˆ j:

RCi 2 fI, Lg^ RCj 2 CRC.
(A13)

Having found contradictory paths, how can we decide
which is to be preferred ? This problem is similar to the
decision between alternative paths during the graph-
theoretical optimization (see Appendix H), with the
exception that here not only a single path may result from
the decision but a group of paths which are intrinsically
compatible. For example, one might face the constellation
A L

! B1, A O
! B2, A I

! B3. The options in this case would be
to either accept the two ¢rst paths, which are mutually
compatible, or the last one. In analogy to the decision
between alternative paths within the graph-theoretical
optimization (see Appendix H), one can base such a

decision on the path categories and/or consider the relia-
bility of the information about the paths (PD codes, see
Appendix I).
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